
Apr 11, 2018
By Silke Schmidt, University of Wisconsin-Madison, Phys.org “Although smartphones and tablets are ubiquitous, many of the companies that make our everyday consumer products still rely on paper trails and manually updated spreadsheets to keep track of their production processes and delivery schedules,” says Leyuan Shi, a professor of industrial and systems engineering at the University of Wisconsin-Madison. That’s what she hopes to change with a research idea she first published almost two decades ago. During the past 16 years, Shi has visited more than 400 manufacturing companies in the United States, China, Europe, and Japan to personally observe their production processes. “And I have used that insight to develop tools that can make these processes run much more smoothly,” she says. These tools are based on the notion of a “digital twin,” or a computer representation of physical assets (machines and people) and processes that helps managers better operate the systems that connect them. Take, for example, a car manufacturing company with 15 different suppliers, each of which delivers a specific car part. As these parts arrive at the company, they are assembled by people who work in different departments, such as sheet metal cutting, heat treatment, welding, painting and so forth. The overall goal of this manufacturing system is to fill a set number of vehicle sales orders. That’s a classic example of a supply chain: a set of processes that link raw source materials to final consumer products. A company’s goal for making supply chain manufacturing more efficient might include decreasing production downtime due to delivery delays for required parts, and better adjusting to unpredictable events, such as rush orders, machine breakdowns, or defective parts. The technology Shi has developed helps managers meet these goals. With a database system, user software and equipment sensors, it creates a digital twin of what is physically happening at the supply facilities and shop floors. Managers can use that digital representation to visually track the global production progress in real time and adjust workflows as needed. The tool provides continuously updated start times for each assembly stage and constantly refined delivery times for the customers who ordered the cars. “That’s what we mean by smart manufacturing,” Shi says. The technology...