Robots With More Common Senses

Robots With More Common Senses

Sep 25, 2017

By ThomasNet The ability for a mechanical device to understand tactile sensations and process reactions accordingly has long been a goal of medical researchers. Recently, a team from the University of Houston was able to realize this goal with the use of a stretchable material that can be used with robotic hands to sense the difference between hot and cold water, as well as other sensations. The new material is being referred to as an artificial skin with stretchable electronics. In addition to more lifelike prosthetics, the team led by mechanical engineering professor Cunjiang Yu feels their new advancement could serve a number of biomedical applications. And outside of the medical field, this new stretchable electronic skin could be used for creating wearable electronics and human-machine interfaces (HMIs). The key was creating a rubber composite semiconductor that would allow the electronic components to continue working even as the material was stretched over the robotic appendage. Traditionally, semiconductors are brittle, making their use in flexible environments challenging without complex mechanical support. In addition to gauging temperature, the rubber semiconductor allowed the new “skin” to understand computer signals sent to the hand, and translate them via American Sign Language. The skin is comprised of a silicon-based polymer called polydimethylsiloxane (PDMS). The composition of PDMS was crucial for accurately placing and holding numerous nanowires. These nanowires transport the electric current used to generate the robotic hand’s ability to feel and...

Reshoring Initiative: Automation is Not the Bad Guy

Reshoring Initiative: Automation is Not the Bad Guy

Jun 22, 2017

By Anna Wells, Industrial Equipment News Automation has long carried the blame for the outflow of jobs from the manufacturing sector, but the Reshoring Initiative says that it is actually key to job growth in the U.S. The Reshoring Initiative is reporting that, for the first time in decades, more manufacturing jobs are returning to the United States than are going offshore. According to a recent press release promoting the Reshoring Initiative’s 2016 Reshoring Report, the combined reshoring and foreign direct investment (FDI) trends grew by over 10 percent in 2016, adding 77,000 jobs and exceeding the rate of offshoring by about 27,000 jobs. “The 2016 results bring the total number of manufacturing jobs brought back from offshore to more than 338,000 since the manufacturing employment low of February 2010,” said the release, adding that there are still “huge opportunities and challenges to bringing back all the 3 to 4 million manufacturing jobs cumulatively lost to offshoring.” Secretly, I’ve always wondered if these kinds of stats were a little overhyped – playing into our desires to latch on to a feel-good story with a positive trajectory. But when the Reshoring Initiative takes a deeper dive into the “whys” of reshoring, they make a pretty compelling case that is clearly resonating. Some of the reasons they cite for the ramp-up include things like proximity to customers, government incentives, skilled workforce availability and “ecosystem synergies,” which I take to mean that intangible of culture that drives so many successful businesses. Transportation equipment remained the strongest industry, accounting for nearly 40 percent of total jobs returned, and plastics/rubber and furniture saw the largest increases in industry ranking. Preliminary 2017 data trends are looking to be at least as good as 2016, but it certainly begs the question as to how we can sustain this activity over time. The Reshoring Initiative believes that government plays a big role, but also, in a recent e-newsletter, has pointed to an unlikely champion: automation. For years, automation has been carrying the blame, rightfully or not, for the outflow of jobs from the manufacturing sector. But the Reshoring Initiative takes a different tact, going so far as to say that automation is...

What role will robotics and 3D printing play in the future…

What role will robotics and 3D printing play in the future…

Jun 15, 2017

“What role will robotics and 3D printing play in the future of manufacturing?” By Nell Walker, Manufacturing Global Digitalisation is taking over the manufacturing world, forcing traditional fossil-fuelled methods out of the way and improving the flexibility of processes globally. IIoT and Industry 4.0 are a looming presence spurring businesses to adopt advanced automation solutions in order to hasten production, lower manufacturing costs, and remain competitive. Top Technologies in Advanced Manufacturing and Automation, 2017 is part of business consultancy Frost & Sullivan’s TechVision Growth Partnership Service program. The study covers the technologies of robotic exoskeletons, metal 3D printing, computer integrated manufacturing, nano 3D printing, collaborative industrial robots, friction stir welding/solid state joining, magnetic levitation (Maglev), composite 3D printing, roll-to-roll manufacturing and agile robots. These are expected to have the most impact across a variety of market segments, including automotive, healthcare, consumer electronics, aerospace and transportation. “Developments in 3D printing materials, metal inks, printing techniques and equipment design are driving the global uptake of metal 3D printing,” said Frost & Sullivan TechVision Research Analyst Ranjana Lakshmi Venkatesh Kumar. “R&D can enhance metal 3D printers’ ability to print high-strength, lightweight prototypes and parts at low costs, making these printers highly relevant in the aerospace and automotive sectors.” The robotics market has also experienced huge advancements recently, and collaborative robots have the highest impact. “Collaborative robots are gaining traction due to their ability to work alongside humans, ensure worker safety and integrate with existing environments,” noted Frost & Sullivan TechVision Research Analyst Varun Babu. “R&D efforts to improve the level of interactivity and customization will bolster the adoption rates of collaborative robots, particularly in automotive, aerospace, logistics and warehousing, healthcare, and consumer electronics industries.” Robotic exoskeletons and agile robots are also important developments of note. The former is a wearable device that can increase strength and mobility of the wearer, and the latter are small robots which offer superior agility, efficiency, and uptime. Overall, with greater government support and deeper convergence, advanced manufacturing and automation solutions will surely be the cornerstones of Industry...

Massive Industrial Robots Vulnerable To Being Hacked

Massive Industrial Robots Vulnerable To Being Hacked

May 11, 2017

By Meagan Parrish, Manufacturing.net Imagine what you could do if you controlled the 220-pound arm of an industrial robot. That’s exactly what researchers set out to do in an experiment that revealed security vulnerabilities in robots that manufacture everything from phones to cars. Conducted by the security firm Trend Micro and Politecnico di Milano, an Italian technical university, the researchers spent over a year finding different ways to hack industrial robots connected to the internet. The robots in the study were made by five of the industry’s biggest manufacturers: ABB, Mitsubishi, Fanuc, Yaskawa and Kawasaki. Ultimately, the researchers found multiple inroads into the robots’ operating systems. In one case they were able to reconfigure a robot’s programming to make it draw a line two millimeters off from the intended target. That change might seem miniscule — unless you consider how it could dramatically alter the safety of a car or an airplane. “If these robots are welding a car chassis together or a wing on an airplane, two millimeters can be catastrophic,” Mark Nunnikhoven, the vice president of cloud research at Trend Micro, said. What’s more, if a hacker was able to physically access the robot or get onto the same local network, they could rewrite the device’s firmware. This would allow the hacker to wield the robot even though it would appear as though the operator was in control. Sound a little frightening? In the study, the hackers imagine a scenario where the robot arm bends backward and destroys itself. An even more gruesome possibility: a compromised robot that appears to be functioning normally could trick an employee into entering its cage and cause physical harm. “The operator thinks it is safe to walk or stand near the robot even if in that very moment, an attacker is controlling its movements,” the report read. After the researchers contacted ABB — the main subject of the study — about the security issues, the company responded by sending out fixes for all of the bugs. “Testing is a critical process to stay ahead of new cyber security threats,” the company said in a statement. “The results [of the Trend Micro tests] emphasize the importance of using...

Robots won’t take your job—they’ll help make room…

Robots won’t take your job—they’ll help make room…

Apr 21, 2017

“Robots won’t take your job—they’ll help make room for meaningful work instead” By TL Andrews, Quartz Unencumbered by the prospect of re-election, outgoing presidents tend to use their final speeches to candidly warn against threats they believe to be metastasizing in society. For example, George Washington spoke of the ills of hyper-partisanship and excessive debt. Dwight Eisenhower denounced the waxing power of the “military industrial complex.” President Barack Obama singled out an economic peril in his otherwise doggedly hopeful final address in Chicago: “The next wave of economic dislocations won’t come from overseas,” he said. “It will come from the relentless pace of automation that makes a lot of good, middle-class jobs obsolete.” Obama articulated a fear felt by many around the world: That all our jobs will eventually be done by robots. Research backs this fear: One study found that automation will threaten at least 47% of jobs in America and up to 85% in the rest of the world. But a number of economists are beginning to argue that this view of automation excludes a lot of the story. Putting automation in context To simply argue that automation is going to gobble up jobs ignores the potential for productivity gains. The Business Harvard Review found that the IT revolution led to 0.6% labor productivity growth and 1% of overall growth in Europe, the US, and Japan between 1995 and 2005. “It all hinges on demand,” says Jim Bessen, professor of economics at Boston University. If the productivity gains are enough to significantly boost demand, then job growth may be the result. This is especially true when new technologies create jobs that simply did not exist before, such as social-media managers. In those cases, any jobs created will make a net contribution to the labor market. Though automation will cost some jobs, it will also create many others. A case in point is the rollout of ATMs in the US. Introduced in the 1970s, the number of ATMs increased from 100,000 to 400,000 between 1995 and 2010. Running an ATM is cheaper than paying a teller’s salary, so as ATMs became more numerous relative to tellers, the overall cost of each bank branch came down. As it became cheaper to operate a...