Boeing HorizonX Invests in 3D Printing Startup Morf3D

Boeing HorizonX Invests in 3D Printing Startup Morf3D

Jul 5, 2018

Featured in Design-2-Part Magazine Investment furthers Boeing’s commitment to a competitive ecosystem for aerospace-quality 3D-printed parts CHICAGO—Boeing announced its investment in Morf3D, an El Segundo, Calif.-based company specializing in metal-based additive engineering and manufacturing. Morf3D’s technology enables lighter and stronger 3D-printed parts for aerospace applications, Boeing said in a press release. Since Morf3D was established in late 2015, the company has produced 3D-printed titanium and aluminum components for Boeing satellites and helicopters. With this investment, Morf3D will collaborate with Boeing to further develop manufacturing processes and engineering capabilities. “Developing standard additive manufacturing processes for aerospace components benefits both companies and empowers us to fully unleash the value of this transformative technology,” said Kim Smith, vice president and general manager of fabrication for Boeing Commercial Airplanes and Boeing Additive Manufacturing leader, in the release. Morf3D’s metallurgy experts are using a new set of additive manufacturing design rules to advance the technology and accelerate 3D-printing capabilities for commercial use. The company uses state-of-the-art software, combined with engineering expertise, to significantly reduce mass and increase the performance and functionality of manufactured parts. “We are excited to be a distinguished and trusted partner of Boeing’s additive manufacturing supplier base, as we continue to industrialize our processes for the high-rate production of flight-worthy additively manufactured components,” said Ivan Madera, CEO of Morf3D, in the release. “This investment will enable us to increase our engineering staff and expand our technology footprint of EOS M400-4 DMLS systems to better serve the growing demands of our aerospace customers.” “As innovative companies continue to revolutionize technologies and methods, we are proud to invest in the rapidly growing and competitive additive manufacturing landscape,” said Steve Nordlund, vice president of Boeing HorizonX, in the release. Boeing HorizonX Ventures co-led this Series A funding round. The Boeing HorizonX Ventures investment portfolio is made up of companies specializing in technologies for aerospace and manufacturing innovations, including autonomous systems, energy storage, advanced materials, augmented reality systems and software, machine learning, hybrid-electric and hypersonic propulsion, and Internet of Things connectivity. In March 2018, Boeing and Norsk Titanium received the Aviation Week Laureate Award for Commercial Supplier Innovation for qualifying the first additively manufactured structural titanium parts on a commercial airplane. In February 2018,...

Desktop 3D Printer Offers Speed, Precision, Ability to Work in…

Desktop 3D Printer Offers Speed, Precision, Ability to Work in…

Jun 18, 2018

“Desktop 3D Printer Offers Speed, Precision, Ability to Work in Metal” Featured on D2PMagazine.com Airwolf 3D calls its newly released EVO a rugged ‘additive manufacturing center’ that is powered by an automotive-grade microcontroller FOUNTAIN VALLEY, Calif.—Airwolf 3D recently released EVO, its 5th generation 3D printer that is said to be so advanced that Airwolf calls it a desktop “Additive Manufacturing Center,” or AMC. “The EVO is completely new and it’s unlike anything out there,” said Airwolf 3D Co-Founder and CEO Erick Wolf, in a company release. “We took the technology that we perfected with our prosumer line of 3D printers and leveraged it to develop a machine that’s light years beyond anything else on the market. The EVO is faster, stronger, and more accurate than any desktop 3D printer—it delivers a premium 3D manufacturing experience at less than half the cost of machines that offer equivalent performance. Plus, it’s packed with new technology that dramatically changes the way we manufacture, including the ability to work in metals. The EVO far surpasses the capabilities of a traditional desktop 3D printer. It’s a true desktop Additive Manufacturing Center.” The EVO possesses Airwolf 3D’s signature suite of features—auto-leveling, large build size, high-temperature multi-material printing, and compatibility with water-soluble Hydrofill support material—but in an ultra-ruggedized unit that includes cutting-edge features available only from Airwolf 3D. Most notable among these is the industry-first PartSave™. Nicknamed “Zombie Mode,” PartSave solves one of the most frustrating problems with 3D printing. There are few things more disheartening than 3D printing a part for hours, only to have it fail completely if the printer stops because of a power outage or unplugging the machine. With PartSave, once power is restored, the machine resumes where it left off, enabling the part to finish. Another industry-first feature, the company said, is FailSafe™. If you run out of filament or experience a jam, FailSafe™ has you covered. Just place the print head at the height you left off and FailSafe will do the rest, restoring your print and completing the job with time to spare, according to Airwolf. The EVO also ships with a full-color 7–inch Matrix touchscreen display, new Tri-Heat™ Enclosed Build Environment, an oversized...

171,000 Jobs Come Home to USA in 2017

171,000 Jobs Come Home to USA in 2017

Jun 4, 2018

By Frank Spotorno with Dan Murphy, Yonkers Times A recent report by our friends at The Reshoring Initiative (reshorenow.org) found that last year, 2017, the USA saw an increase in manufacturing jobs coming back to this country, or reshoring, at a record pace: 171,000 jobs have returned as a result of reshoring or foreign investment. American companies are shifting their production of goods from outside the U.S. and bringing their jobs home. While the 171,000 jobs that returned last year is significant, projected figures from this year show that the trend toward making it in the USA is continuing. While some of the reasons for the return of manufacturing jobs to the USA can be attributed to President Donald Trump and his “Buy American, Hire American” initiative, other factors that add to the bottom line of U.S. companies include proximity to customers, government incentives, and the value of “Made in the USA” branding. Harry Mosher, president of the Reshoring Initiative, said that more jobs will continue to come back to the USA. “With 3 million to 4 million manufacturing jobs still offshore, as measured by our $500 billion-per-year trade deficit, there is potential for much more growth,” he said. “We call on the administration and Congress to enact policy changes to make the United States competitive again.” Mosher added that a strong dollar and a stronger skilled U.S. workforce helps continue the wave of jobs coming back home. The Reshoring Initiative has been calculating the cost of doing business for American companies overseas, and comparing it to making it in the USA for more than a decade. Every year the cost of building goods and products in China, in comparison to the USA, has narrowed and is now at the point where it makes real business sense to return manufacturing plants back to America. “We know where the imports are by country, and we know the price difference between the foreign price and the U.S price,” said Mosher. “The total cost of foreign-made goods delivered to the U.S. is a full 95 percent of the cost of U.S.-produced goods. We know how much you have to shift it to make the U.S. competitive with China.”...

Smart manufacturing technology is changing business…

Smart manufacturing technology is changing business…

May 30, 2018

“Smart manufacturing technology is changing business processes” By Jim O’Donnell, TechTarget The future is here: AI enablement and smart manufacturing technologies are transforming business systems today, according to technology futurist Jack Shaw. Imagine a scenario where a plane in midflight from Paris to Boston gets a signal from an embedded sensor in an engine fuel nozzle that indicates excessive wear. Once the plane lands, it will need to be taken out of service for hours or even days as the airline locates and installs a replacement part. The entire process is time-consuming, expensive and inconvenient for passengers and crews. But thanks to smart manufacturing technology and AI-enabled business processes and systems, there is a better way, according to technology futurist and consultant Jack Shaw. The digital transformation to an AI-enabled business ecosystem is happening now, Shaw said in a presentation at the Smart Manufacturing Experience conference this month in Boston. An autonomous self-contained process Rather than the current costly and time-consuming process, the smart manufacturing technology ecosystem encompasses a self-contained and autonomous parts replacement process. To start the process, industrial IoT (IIoT) smart sensor circuitry in the engine’s nozzle triggers the aircraft’s autonomous maintenance system, which then messages the airline’s global maintenance system that the part will be needed when the plane lands in Boston, Shaw said. The airline’s global procurement system is notified. It scours thousands of websites to identify Federal Aviation Administration (FAA)-certified parts suppliers, negotiates the terms with the supplier’s AI-enabled order management system and executes a smart contract to procure the part. Once the procurement contract is authorized, a design file of the fuel nozzle part is downloaded to a 3D printer located near the Boston airport. The entire process — from the identification of a part defect to the design download to the 3D printer — takes less than four minutes and requires no human intervention, according to Shaw. But the smart manufacturing technology and AI-enabled ecosystem is not finished. Automatic procurement processes identify and select technical engineers who are experienced with replacing this particular part and available to do the work. The technical engineer who installs the part then uses augmented reality (AR) goggles that display a 3D video of the entire replacement process directly on...

The Four Slide Metal Stamping Advantage

The Four Slide Metal Stamping Advantage

May 9, 2018

By ThomasNet.com  Metal stamping is used to turn cold sheet metal and other materials — such as copper and brass — into high-performing products and parts that can be used in various industrial and manufacturing processes. Traditionally, power press stamping machines are built to blank and stamp metal parts; these machines are ideal for simple, straightforward operations. Progressive die stamping improved on power press stamping machines by allowing for the completion of various operations, such as punching, coining, and bending. Multi-slide stamping machines then further improve the die stamping process by allowing for the production of highly complex shapes and bends. The four slide metal stamping machine is one such machine, although the terms “multi-slide” and “four slide” are often used interchangeably. How Does Four Slide Metal Stamping Work? Power press stamping and progressive die stamping both utilize an up-and-down, or vertical, motion when processing sheet metal and other materials. These stamping methods are geared toward the production of less complex parts. Multi-slide metal stamping, including four slide metal stamping, is different; these machines work in right angles, or horizontally. The slides, or rams, in the machines, strike the sheet material to produce the finished product. Multi-slide stamping machines may have more than four multiple moving slides, while four slide metal stamping machines have a fixed number. Servo motors or cams act on the slides, allowing the workpiece to be worked from four sides. The Benefits of Using a Four Slide Metal Stamping Machine Since different tools can be attached to the slides in a four slide metal stamping machine, it is much more versatile than a stamping press. Four slide equipment is also able to handle the manufacture of much more complicated parts, including parts with multiple, complex, or over 90° bends and twists. A huge range of parts can be produced using four slide metal stamping, including flat springs, clips, brackets, shunts, friction plates, terminals, and retainers. Both flat and round materials can be formed. Moreover, four slide metal stamping machines are much more cost-efficient than other stamping machines. The tools needed for four slide stamping are often cheaper than those required by other stamping methods, and die sets are not required....