Machining Parts Complete in One Clamping

Machining Parts Complete in One Clamping

Jun 28, 2016

By Jim Lorincz, Manufacturing Engineering Multitasking machines not only enhance productivity, but they also improve quality The appeal of multitasking machining isn’t difficult to understand. Multitasking machines overcome some limitations of conventional machines and work their own special brand of magic in subtractively processing parts. From the earliest mill-turn machines to today’s most advanced multifunction machines featuring simultaneous processing, manufacturers have recognized that productivity-enhancing multitasking machining and quality go hand in hand. The ability to drop parts complete in one clamping from one machine removes accuracy-robbing reclamping on a second machine and provides flexibility to quickly change over to meet short-run production demand. Innovative machine configurations and flexible workholding are expanding the limits of future multitasking machines. Testing the Limits and Pushing the Boundaries of Multitasking “One of the primary goals of multitasking machine development is to minimize any tradeoffs,” said David Fischer, lathe product specialist, Okuma America Corp. (Charlotte, NC). “Customers don’t want to give up any milling capabilities on their multitasking lathes and they don’t want to give up any turning capabilities on the multitasking machining centers.” Okuma’s Multus series of multitasking lathes are equipped with milling spindles capable of performance equal to its large machining centers. Spindles range from 6000 to 12,000 rpm and even 20,000 rpm and achieve metal removal rates that are on par with typical machining centers. In addition, technologies such as Okuma’s Turn-cut Function that were only available on machining centers in the past are now migrating to the Multus. “There are several key features that make multitasking machines attractive to manufacturers,” Fischer said. “Producing a part conventionally requires an operator or robot to move the part from one machine to another. In each case, a misload is possible resulting in scrap or rework. With a multitasking machine the raw material must be loaded and a finished part unloaded. Everything else is handled by the machine, eliminating the intermediate steps where mistakes can happen. The ability to change from one job to another in a matter of minutes makes it relatively painless to respond to rapidly changing production demands. For example, interruptions for that hot job no longer result in multiple machine setups to make it. Just...

Machining Parts Complete in One Clamping

Machining Parts Complete in One Clamping

May 25, 2016

By Jim Lorincz, Manufacturing Engineering Multitasking machines not only enhance productivity, but they also improve quality The appeal of multitasking machining isn’t difficult to understand. Multitasking machines overcome some limitations of conventional machines and work their own special brand of magic in subtractively processing parts. From the earliest mill-turn machines to today’s most advanced multifunction machines featuring simultaneous processing, manufacturers have recognized that productivity-enhancing multitasking machining and quality go hand in hand. The ability to drop parts complete in one clamping from one machine removes accuracy-robbing reclamping on a second machine and provides flexibility to quickly change over to meet short-run production demand. Innovative machine configurations and flexible workholding are expanding the limits of future multitasking machines. Testing the Limits and Pushing the Boundaries of Multitasking “One of the primary goals of multitasking machine development is to minimize any tradeoffs,” said David Fischer, lathe product specialist, Okuma America Corp. (Charlotte, NC). “Customers don’t want to give up any milling capabilities on their multitasking lathes and they don’t want to give up any turning capabilities on the multitasking machining centers.” Okuma’s Multus series of multitasking lathes are equipped with milling spindles capable of performance equal to its large machining centers. Spindles range from 6000 to 12,000 rpm and even 20,000 rpm and achieve metal removal rates that are on par with typical machining centers. In addition, technologies such as Okuma’s Turn-cut Function that were only available on machining centers in the past are now migrating to the Multus. “There are several key features that make multitasking machines attractive to manufacturers,” Fischer said. “Producing a part conventionally requires an operator or robot to move the part from one machine to another. In each case, a misload is possible resulting in scrap or rework. With a multitasking machine the raw material must be loaded and a finished part unloaded. Everything else is handled by the machine, eliminating the intermediate steps where mistakes can happen. The ability to change from one job to another in a matter of minutes makes it relatively painless to respond to rapidly changing production demands. For example, interruptions for that hot job no longer result in multiple machine setups to make it. Just...

Medical Machining Tightens Up

Medical Machining Tightens Up

Apr 7, 2016

Regulations, competition are causing part makers to tighten profit margins, part tolerances and cycle times By Michael C. Anderson, Manufacturing Engineering The medical device market finds ways to stay in the headlines in one way or another, whether it’s because of big mergers (such as Medtronic’s acquisition of Covidien) or tax-inversion moves (such as Medtronic’s subsequent relocation of its headquarters to Ireland). Medical device companies and their lobbyists continue to push back against the US medical device tax used to cover some of the costs of the Affordable Care Act. And recalls of medical products certainly get into the media. But away from the front page of the business section, manufacturers in the medical device field are feeling the effects of a shift in health care practices. “The regulatory environment in North America and Europe has driven a shift to value-based healthcare solutions, which in turn has resulted in increased competition, changing business models, and innovative strategies to achieve sustainable growth,” medical market analyst Bryan Hughes of P&M Corporate Finance LLC (Chicago) said. The ripple effects from all of these developments are reaching the medical device side of the machining business, resulting in a tightening of a number of parameters, from profit margins to part tolerances and more. Tighter Margins Scott Walker, president of Mitsui Seiki USA Inc. (Franklin Lakes, NJ), gives an example of the way hospitals do business has changed—and how that change affects medical manufacturers and their suppliers. “Ten years ago, a hospital used to go in and buy the entire range of components,” Walker said. “For knee replacements, for example, a hospital would buy a box and in it would be, say, 15 sets of knees. They didn’t know until they cut your leg open what size would fit in there, so they were ready with a range of sizes that they had purchased.” No longer, he said. “Today the way it works is, a knee-replacement salesman goes into the room with the surgical team, he brings in a box of knees, and the hospital only buys and uses what goes into the patient.” That kind of practice means a lot fewer knees get sold, and so the manufacturers are...