
Jun 28, 2016
By Jim Lorincz, Manufacturing Engineering Multitasking machines not only enhance productivity, but they also improve quality The appeal of multitasking machining isn’t difficult to understand. Multitasking machines overcome some limitations of conventional machines and work their own special brand of magic in subtractively processing parts. From the earliest mill-turn machines to today’s most advanced multifunction machines featuring simultaneous processing, manufacturers have recognized that productivity-enhancing multitasking machining and quality go hand in hand. The ability to drop parts complete in one clamping from one machine removes accuracy-robbing reclamping on a second machine and provides flexibility to quickly change over to meet short-run production demand. Innovative machine configurations and flexible workholding are expanding the limits of future multitasking machines. Testing the Limits and Pushing the Boundaries of Multitasking “One of the primary goals of multitasking machine development is to minimize any tradeoffs,” said David Fischer, lathe product specialist, Okuma America Corp. (Charlotte, NC). “Customers don’t want to give up any milling capabilities on their multitasking lathes and they don’t want to give up any turning capabilities on the multitasking machining centers.” Okuma’s Multus series of multitasking lathes are equipped with milling spindles capable of performance equal to its large machining centers. Spindles range from 6000 to 12,000 rpm and even 20,000 rpm and achieve metal removal rates that are on par with typical machining centers. In addition, technologies such as Okuma’s Turn-cut Function that were only available on machining centers in the past are now migrating to the Multus. “There are several key features that make multitasking machines attractive to manufacturers,” Fischer said. “Producing a part conventionally requires an operator or robot to move the part from one machine to another. In each case, a misload is possible resulting in scrap or rework. With a multitasking machine the raw material must be loaded and a finished part unloaded. Everything else is handled by the machine, eliminating the intermediate steps where mistakes can happen. The ability to change from one job to another in a matter of minutes makes it relatively painless to respond to rapidly changing production demands. For example, interruptions for that hot job no longer result in multiple machine setups to make it. Just...