Q&A: Unlock a Bright Future With 3D Printing

Q&A: Unlock a Bright Future With 3D Printing

Mar 19, 2019

By Manufacturing.net Ben Schwauren, CTO and co-founder of Oqton, discusses how even the smallest advancements in 3D printing can unlock a bright future for factories that meets new industry demands. Manufacturing.net: How can additive manufacturing lead to a more agile operation? Ben Schrauwen: There are a few key ways that additive manufacturing can result in a more agile manufacturing operation. One commonly discussed is that additive hardware ‘doesn’t care’ about what it’s creating. A 3D printer generates thousands of unique pieces at an equal effort it takes to generate thousands of identical pieces. This allows manufacturers to remove cost and time barriers when setting up production, particularly for smaller batch sizes. Further, the complexity of a part is not an issue in an additive process. For example, parts with internal structures can be additively built as one piece, rather than multiple pieces that require assembly as via other methods, speeding production and also reducing opportunity for failure or error. The other important way that additive lends agility is in its ability to support rapid iteration. Small changes to the design file can immediately be implemented in the produced part, offering manufacturers increased opportunity to test, iterate and bring more valuable products to market, quicker. Manufacturing.net: What would it take (skill, training, expense, etc) to see 3D printing at work in factories? Ben Schrauwen: Additive technology has been at work in prototyping labs for decades, but it’s struggled to drop cost in order to make the shift into the production environment. Cost of the machine currently accounts for between 60 to 80 percent of total metal production AM expenses. But cost continues to decrease and machine quality increases as more competition enters the market. A bigger issue is that the machines and accompanying software tools are too hard to use, requiring lengthy training including expensive trial-and-error in order to become familiar. Additive tools have to become smarter on their own in order to take the burden off their operators. Skilled engineers shouldn’t have to repeatedly work through the same issues because the hardware or software isn’t intuitive. Manufacturing.net: What changes can we expect to see in the industry if there is greater adoption of 3D printing?...

Introducing the Industrialization of Additive Manufacturing

Introducing the Industrialization of Additive Manufacturing

Feb 14, 2019

By Phil Schultz, executive vice president of Operations at 3D Systems Featured on Manufacturing.net Manufacturers stand at a crossroads of two competing visions. They can either continue with traditional factory processes or they can embrace the challenge of Industry 4.0 and create physical products with a fully digital ecosystem. For those who embrace digital, the industrialization of additive manufacturing (AM) is key. Traditional factory processes have been fine-tuned over the years for process repeatability, part durability, efficient workflows, and low operational costs. These processes predate the digital revolution. Many times these processes also include high labor costs, significant up-front production costs, and safety issues. Today, new marketplace demands are pushing industry to increase speed and agility. Competitive pressures require shorter production cycles and fast product ecosystem evolution. The industrialization of additive manufacturing will allow companies to respond to these demands with digital speed and accuracy. Digital processes have an undeniable ability to drive down operational costs, especially when applied across all processes and not in a selective fashion. Key 3D printing technologies are ready to serve as the strategic backbone of industrial innovation. New materials, technologies, design solutions, and digital workflow processes are readying the factory floor to become the Digital Factory.  Additive manufacturing is disruptive by nature, impacting both supply chain and manufacturing processes. AM business analyst Dr. Wilderich Heising of Boston Consulting Group sees a shift taking place in AM. In prepared remarks at the Formnext Conference in Frankfurt in November 2018, Heising said process optimization in manufacturing is driving new speed capabilities in AM. He said the ability to increase build rate by up to five times at the same quality translates into a total reduction of machine cost per part by more than 50 percent. Such increases will mean break-even production costs can move to much higher volumes than available today. Manufacturers will invest in Digital Factory technology when they see it bringing a balance of innovation and ecosystem maturity. For some that means lowering labor costs and improving safety. To others it means the ability to create previous unbuildable parts and to rapidly move from one product design to another. For most manufacturers, printing in production volume will be the fundamental...

When Is 3D Printing Cost Effective?

When Is 3D Printing Cost Effective?

Oct 30, 2018

By Christina M. Fuges, Contributing Editor, Additive Manufacturing Hype continues to surround additive manufacturing. These three factors can help determine whether a part is worth 3D printing. Digging into metal additive manufacturing quickly reveals how expensive it can be, as some parts produced using incumbent technologies, such as laser sintering and binder jetting, can cost thousands of dollars. If there’s one lesson Matt Sand, President of 3DEO, a Los Angeles, California-based metal AM parts supplier, has learned over the last few years, it’s that cost is everything when it comes to serial production. “If you’re not in the ballpark on cost, you might as well not even play the game because there’s no way to get into production without being cost competitive with conventional manufacturing techniques,” Sand says. “If you are not cost competitive, you’re not at the table,” So, to get the total cost structure down, 3DEO developed an end-to-end manufacturing process around Intelligent Layering, a very low-cost metal additive manufacturing technology the company’s founders invented. Based on binder jetting technology, Intelligent Layering uses a proprietary spray system to bind the entire layer, and then uses a CNC end mill to cut the perimeter of the part and any internal features. (Read more about 3DEO’s technology and company strategy.) Although 3DEO’s Intelligent Layering process offers a new take on additive, the company’s differentiator is that “we are not trying to sell machines, we’re only selling parts,” Sand says. The competition for its additive process is not metal 3D printing; it’s traditional manufacturing. 3DEO is competing against CNC machining and metal injection molding and is already cost competitive with both of these technologies when it comes to small and complex metal parts, according to Sand. There are three key factors he considers in determining whether it will be cost-effective to 3D print a given part:  1. Part Size Is it bigger/smaller than a golf ball? One thing Sand has learned over the last few years is that as part size increases, the cost increases on an exponential curve. Smaller (golf ball-sized) parts manufactured traditionally are price competitive. However, as the part size starts to reach softball size and greater, the cost skyrockets. It’s not uncommon in laser sintering for very...

Report Highlights How the Manufacturing Landscape Is Set…

Report Highlights How the Manufacturing Landscape Is Set…

Sep 19, 2018

“Report Highlights How the Manufacturing Landscape Is Set for ‘The Next American Industrial Revolution’ “ By Quality Magazine OYSTER BAY, NY — The manufacturing landscape is about to change and change in a big way, announced ABI Research, a market-foresight advisory firm. The debate over if digitization will impact this market has passed, according to ABI Research. The key questions that should be asked by all involved in this market now are: When will these changes happen? What do I need to do to prepare for this? And finally, which horse do I bet on in terms of technological investment? ABI Research had seven analysts from its Industrial research group on-site at the IMTS 2018 (International Manufacturing Trade Show) conference in Chicago, and their observations have been compiled into four brief reads: “The Next American Industrial Revolution: Key Takeaways from IMTS 2018 and Hannover Messe USA.” There are several emerging technologies that look set to enable manufacturers in developing markets to remain competitive. Some noteworthy findings from the whitepaper include: Additive manufacturing is on the cusp of being able to demonstrate its applicability for scale deployment.  Generative design promises to reduce wastage, speed design processes, and revolutionize material usage. Virtualization, visualization, and digital twins are set to reduce machine downtime and machine commissioning time as well as improve the efficiency of all aspects of part and product manufacturing, from start to end. Cobots and autonomous material handling robots are set to enable a more efficient and zero touch environment that not only optimizes the shop floor but also extends beyond the line to both ends of the process in the warehouse and eventually into the logistics supply chain. AI (Artificial Intelligence), sensorization, connectivity, and IoT (Internet of Things) will be key to optimizing productivity. However, they are currently being held back by conservative attitudes toward data management and connecting machines. This will change as the market pressure mounts. “These technological advancements hold the promise of enabling a cleaner, more efficient, and relevant manufacturing sector for developed markets. The innovation outlined in the ‘The Next American Industrial Revolution’ paper will spill over into the supply chain, and the two market segments will be characterized by...

Boeing HorizonX Invests in 3D Printing Startup Morf3D

Boeing HorizonX Invests in 3D Printing Startup Morf3D

Jul 5, 2018

Featured in Design-2-Part Magazine Investment furthers Boeing’s commitment to a competitive ecosystem for aerospace-quality 3D-printed parts CHICAGO—Boeing announced its investment in Morf3D, an El Segundo, Calif.-based company specializing in metal-based additive engineering and manufacturing. Morf3D’s technology enables lighter and stronger 3D-printed parts for aerospace applications, Boeing said in a press release. Since Morf3D was established in late 2015, the company has produced 3D-printed titanium and aluminum components for Boeing satellites and helicopters. With this investment, Morf3D will collaborate with Boeing to further develop manufacturing processes and engineering capabilities. “Developing standard additive manufacturing processes for aerospace components benefits both companies and empowers us to fully unleash the value of this transformative technology,” said Kim Smith, vice president and general manager of fabrication for Boeing Commercial Airplanes and Boeing Additive Manufacturing leader, in the release. Morf3D’s metallurgy experts are using a new set of additive manufacturing design rules to advance the technology and accelerate 3D-printing capabilities for commercial use. The company uses state-of-the-art software, combined with engineering expertise, to significantly reduce mass and increase the performance and functionality of manufactured parts. “We are excited to be a distinguished and trusted partner of Boeing’s additive manufacturing supplier base, as we continue to industrialize our processes for the high-rate production of flight-worthy additively manufactured components,” said Ivan Madera, CEO of Morf3D, in the release. “This investment will enable us to increase our engineering staff and expand our technology footprint of EOS M400-4 DMLS systems to better serve the growing demands of our aerospace customers.” “As innovative companies continue to revolutionize technologies and methods, we are proud to invest in the rapidly growing and competitive additive manufacturing landscape,” said Steve Nordlund, vice president of Boeing HorizonX, in the release. Boeing HorizonX Ventures co-led this Series A funding round. The Boeing HorizonX Ventures investment portfolio is made up of companies specializing in technologies for aerospace and manufacturing innovations, including autonomous systems, energy storage, advanced materials, augmented reality systems and software, machine learning, hybrid-electric and hypersonic propulsion, and Internet of Things connectivity. In March 2018, Boeing and Norsk Titanium received the Aviation Week Laureate Award for Commercial Supplier Innovation for qualifying the first additively manufactured structural titanium parts on a commercial airplane. In February 2018,...